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M. Will,28 C. Williams,48 T. Winchen,25 D. Wittkowski,25 B. Wundheiler,11 S. Wykes,16 T. Yamamoto,48

T. Yapici,57 G. Yuan,77 A. Yushkov,1 B. Zamorano,36 E. Zas,13 D. Zavrtanik,64, 63 M. Zavrtanik,63, 64

I. Zaw,8 A. Zepeda,37 J. Zhou,48 Y. Zhu,67 M. Zimbres Silva,43 M. Ziolkowski,1 and F. Zuccarello40

(The Pierre Auger Collaboration)∗

1Universität Siegen, Siegen, Germany
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We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower
profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre
Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is
described in detail as well as the experimental cross-checks and systematic uncertainties. Further-
more, we discuss the detector acceptance and the resolution of the Xmax measurement and provide
parameterizations thereof as a function of energy. The energy dependence of the mean and standard
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deviation of the Xmax-distributions are compared to air-shower simulations for different nuclear pri-
maries and interpreted in terms of the mean and variance of the logarithmic mass distribution at
the top of the atmosphere.

I. INTRODUCTION

The mass composition of ultra-high energy cosmic rays
is one of the key observables in studies of the origin of
these elusive particles. At low and intermediate ener-
gies between 1017 and 1019 eV, precise data on the com-
position are needed to investigate a potential transition
from galactic to extragalactic sources of the cosmic-ray
flux (see, e.g., [1–4]). Furthermore, the evolution of the
composition towards 1020 eV will help to understand the
nature of the steepening of the flux of cosmic rays ob-
served at around 4×1019 eV [5–7]. This flux suppression
might either be caused by energy losses of extragalactic
particles due to interactions with photons (cosmic mi-
crowave background in case of protons or extragalactic
background light in case of heavy nuclei) [8, 9], or it might
signify the maximum of attainable energy in astrophysi-
cal accelerators, resulting in a rigidity-dependent change
of the composition (see, e.g., [10–14]).

Due to the low intensity of cosmic rays at the highest
energies, the primary mass cannot be measured directly
but is inferred from the properties of the particle cascade
initiated by a primary cosmic ray interacting with nuclei
of the upper atmosphere. These extensive air showers
can be observed with ground-based detectors over large
areas. The mass and energy of the primary particles can
be inferred from the properties of the longitudinal devel-
opment of the cascade and the particle densities at the
ground after making assumptions about the characteris-
tics of high-energy interactions (see, e.g., [15] for a recent
review).

The energy deposited in the atmosphere by the sec-
ondary air-shower particles is dominated by electron and
positron contributions. The development of the corre-
sponding electromagnetic cascade [16] is best described
as a function of traversed air mass, usually referred to as
the slant depth X. It is obtained by integrating the den-
sity of air along the direction of arrival of the air shower
through the curved atmosphere,

X(z) =

∫ ∞
z

ρ(r(z′)) dz′, (1)

where ρ(r(z)) is the density of air at a point with longi-
tudinal coordinate z along the shower axis.

The depth at which the energy deposit reaches its max-
imum is the focus of this article. The depth of shower
maximum, Xmax, is proportional to the logarithm of the
mass A of the primary particle. However, due to fluctu-
ations of the properties of the first few hadronic interac-

∗ auger˙spokespersons@fnal.gov

tions in the cascade, the primary mass cannot be mea-
sured on an event-by-event basis but must be inferred
statistically from the distribution of shower maxima of
an ensemble of air showers. Given that nuclei of mass Ai
produce a distribution fi(Xmax), the overall Xmax distri-
bution is composed of the superposition

f(Xmax) =
∑
i

pi fi(Xmax), (2)

where the fraction of primary particle of type i is given
by pi. The first two moments of f(Xmax), i.e., its mean
and variance, 〈Xmax〉 and σ(Xmax)2 respectively, have
been extensively studied in the literature [17–23]. They
are to a good approximation linearly related to the first
two moments of the distribution of the logarithm of the
primary mass, which is given by

g(lnA) =
∑
i

pi δ (lnA− lnAi) , (3)

where δ is the Dirac delta function.
The exact shape of fi(Xmax) as well as the coefficients

that relate the moments of f(lnA) and f(Xmax) depend
on the details of hadronic interactions in air showers (see,
e.g., [24–26]). On the one hand, this introduces consider-
able uncertainties in the interpretation of the Xmax dis-
tributions in terms of primary mass, since the modeling
of these interactions relies on extrapolations of accelera-
tor measurements to cosmic-ray energies. On the other
hand, it implies that the Xmax distributions can be used
to study properties of hadronic interactions at energies
much larger than currently available in laboratory ex-
periments. A recent example of such a study is the mea-
surement of the proton-air cross section at

√
s = 57 TeV

using the upper tail of the Xmax distribution [27].
Experimentally, the longitudinal profile of the en-

ergy deposit of an air shower in the atmosphere (and
thus Xmax) can be determined by observing the fluores-
cence light emitted by nitrogen molecules excited by the
charged particles of the shower. The amount of fluores-
cence light is proportional to the energy deposit [28, 29]
and can be detected by optical telescopes. The instru-
ment used in this work is described in Sec. II and the re-
construction algorithms leading to an estimate of Xmax

are laid out in Sec. III.
Previous measurements of Xmax with the fluorescence

technique have concentrated on the determination of
the mean and standard deviation of the Xmax distribu-
tion [30–33]. Whereas with these two moments the over-
all features of primary cosmic-ray composition can be
studied, and composition fractions in a three-component
model can even be derived, only the distribution con-
tains the full information on composition and hadronic
interactions that can be obtained from measurements of
Xmax.

mailto:auger_spokespersons@fnal.gov
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In this paper, we provide for the first time the mea-
sured Xmax distributions together with the necessary in-
formation to account for distortions induced by the mea-
surement process. The relation between the true and
observed Xmax distribution is

fobs(X
rec
max) =∫ ∞

0

f(Xmax) ε(Xmax) R(Xrec
max −Xmax) dXmax,

(4)

i.e., the true distribution f is deformed by the detec-
tion efficiency ε and smeared by the detector resolution
R that relates the true Xmax to the reconstructed one,
Xrec

max. For an ideal detector, ε is constant and R is close
to a delta function. In Sec. IV, we describe the fiducial
cuts applied to the data that guarantee a constant effi-
ciency over a wide range of Xmax and the quality cuts
that assure a good Xmax resolution. Parameterization of
ε and R are given in Sec. V and VI.

Given fobs, R and ε it is possible to invert Eq. (4)
to obtain the true distribution f(Xmax). However, since
fobs is obtained from a limited number of events, its sta-
tistical uncertainties propagate into large uncertainties
and negative correlations of the deconvoluted estimator

of the true distribution, f̂(Xmax). In practice, meth-

ods which reduce the uncertainties of f̂(Xmax) by ap-
plying additional constraints to the solution exist (see,
e.g., [34]), but these constraints introduce biases that are
difficult to quantify. Therefore we choose to publish fobs

together with parameterizations of R and ε. In Sec. VII it
is demonstrated how to derive 〈Xmax〉 and σ(Xmax) from
fobs, R and ε. The systematic uncertainties in the mea-
surement of fobs are discussed in Sec. VIII and validated
in Sec. IX. In Sec. X the measured Xmax distributions will
be shown in bins of energy reaching from E = 1017.8 eV
to >1019.5 eV together with a discussion of their first two
moments.

II. THE PIERRE AUGER OBSERVATORY

In this paper we present data from the Pierre Auger
Observatory [35]. It is located in the province of Men-
doza, Argentina, and consists of a Surface-Detector array
(SD) [36] and a Fluorescence Detector (FD) [37]. The
SD is equipped with over 1600 water-Cherenkov detec-
tors arranged in a triangular grid with a 1500 m spac-
ing, detecting photons and charged particles at ground
level. This 3000 km2 array is overlooked by 24 fluores-
cence telescopes grouped in units of 6 at four locations
on its periphery. Each telescope collects the light of air
showers over an aperture of 3.8 m2. The light is focused
on a photomultiplier (PMT) camera with a 13 m2 spher-
ical mirror. Corrector lenses at the aperture minimize
spherical aberrations of the shower image on the camera.
Each camera is equipped with 440 PMT pixels, whose
field of view is approximately 1.5◦. One camera covers
30◦ in azimuth and elevations range from 1.5◦ to 30◦

above the horizon. The FD allows detection of the ultra-
violet fluorescence light induced by the energy deposit of
charged particles in the atmosphere and thus measures
the longitudinal development of air showers. Whereas
the SD has a duty cycle near 100%, the FD operates
only during dark nights and under favorable meteorolog-
ical conditions leading to a reduced duty cycle of about
13%.

Recent enhancements of the Observatory include a
sub-array of surface detector stations with a spacing of
750 m and three additional fluorescence telescopes with
a field of view from 30◦ to 60◦ co-located at one of the
“standard” FD sites [38, 39]. These instruments are
not used in this work, but they will allow us to ex-
tend the analysis presented here to lower energies (E ∼
1017 eV) [40].

In addition to the FD and SD, important prerequisites
for a precise measurement of the energy and Xmax of
showers are devices for the calibration of the instruments
and the monitoring of the atmosphere.

The calibration of the fluorescence telescopes in terms
of photons at aperture per ADC count in the PMTs is
achieved by approximately yearly absolute calibrations
with a Lambertian light source of known intensity and
nightly relative calibrations with light-emitting diodes il-
luminating the FD cameras [41–43]. The molecular prop-
erties of the atmosphere at the time of data taking are
obtained as the 3-hourly data tables provided by the
Global Data Assimilation System (GDAS) [44], which
have been extensively cross-checked with radio sound-
ings on site [45]. The aerosol content of the atmosphere
during data taking is continuously monitored [46]. For
this purpose, the vertical aerosol optical depth (VAOD)
is measured on an hourly basis using laser shots pro-
vided by two central laser facilities (CLFs) [47, 48] and
cross-checked by lidars [49] operated at each FD site. Fi-
nally, clouds are detected via observations in the infrared
by cameras installed at each FD site [50] and data from
the Geostationary Operational Environmental Satellites
(GOES) [51, 52]

III. EVENT RECONSTRUCTION

The reconstruction of the data is performed within the
offline framework of the Pierre Auger Observatory [53].
Firstly, all PMT pixels belonging to the shower image on
the camera are identified using a Hough-transformation
and subsequently fitted to reconstruct the plane spanned
by the axis of the incoming shower and the telescope po-
sition. Within this plane a three-dimensional reconstruc-
tion of the shower-arrival direction is achieved by deter-
mining the geometry from the arrival times of the shower
light as a function of viewing angle [54] and from the time
of arrival of the shower front at ground level as measured
by the surface-detector station closest to the shower axis.
This leads to a hybrid estimate of the shower geometry
with a precision of typically 0.6◦ for the arrival direction
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Figure 1: Reconstruction of event 15346477.

of the primary cosmic ray [55–57]. An example of the
image of a shower in an FD camera is shown in Fig. 1a
and the reconstructed geometry is shown in Fig. 1b.

The detected signals in the PMTs of the telescope cam-
eras as a function of time are then converted to a time-
trace of light at the aperture using the calibration of the
absolute and relative response of the optical system. At
each time ti, the signals of all PMTs with pointing di-
rections within an opening angle ζopt with respect to the
corresponding direction towards the shower are summed
up. ζopt is determined on an event-by-event basis by max-
imizing the ratio of the collected signal to the accumu-
lated noise induced by background light from the night
sky. The average ζopt of the events used in this analysis is
1.3◦, reaching up to 4◦ for showers detected close to the
telescope. The amount of light outside of ζopt due to the
finite width of the shower image [58, 59] and the point
spread function of the optical system [60, 61] is corrected
for in later stages of the reconstruction and multiply-

scattered light within ζopt is also accounted for [62–64].

With the help of the reconstructed geometry, every
time bin is projected to a piece of path length ∆`i on
the shower axis centered at height hi and slant depth
Xi. The latter is inferred by integrating the atmospheric
density through a curved atmosphere. Given the distance
to the shower, the light at the aperture can be projected
to the shower axis to estimate the light emitted by the
air-shower particles along ∆`i, taking into account the
attenuation of light due to Rayleigh scattering on air and
Mie scattering on aerosols.

The light from the shower is composed of fluorescence
and Cherenkov photons. The production yield of the
former is proportional to the energy deposited by the
shower particles within the volume under study, and the
latter depends on the number of charged particles above
the energy threshold for Cherenkov emission. Due to
the universality of the energy spectra of electrons and
positrons in air showers [65–68], the energy deposit and
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the number of particles are proportional, and therefore
an exact solution for the reconstruction of the longitu-
dinal profile of either of these quantities exists [69]. An
example of a profile of the reconstructed energy deposit
can be seen in Fig. 1d and the contributions of the differ-
ent light components to the detected signal are shown in
Fig. 1c. The Cherenkov light production is calculated fol-
lowing [67] and for the fluorescence-light emission along
the shower we use the precise laboratory measurements
of the fluorescence yield from [70, 71].

In the final step of the reconstruction, the shower max-
imum and total energy are obtained from a log-likelihood
fit of the number of photo-electrons detected in the PMTs
using the Gaisser-Hillas function [72], fGH, as a func-
tional description of the dependence of the energy deposit
on slant depth,

fGH(X) =(
dE

dX

)
max

(
X −X0

Xmax −X0

)Xmax−X0
λ

e
Xmax−X

λ .
(5)

The two shape parameters X0 and λ are constrained
to their average values to allow for a gradual transition
from a two- to a four-parameter fit depending on the
amount of slant depth observed along the track and the
number of detected photons from the respective event,
cf. [69]. The constraints are set to the average values
found in the ensemble of events for which an uncon-
strained fit with four-parameters is possible. They are
given by 〈X0〉 = −121 g/cm

2
and 〈λ〉 = 61 g/cm

2
, and

the observed standard deviations of these sample means
are 172 and 13 g/cm

2
, respectively. An example of a

Gaisser-Hillas function that has been obtained by the log-
likelihood fit to the detected photo-electrons in Fig. 1c is
shown in Fig. 1d.

The calorimetric energy of the shower is obtained by
the integration of fGH and the total energy is derived
after correcting for the “invisible” energy, carried away
by neutrinos and muons. This correction has been esti-
mated from hybrid data [73] and is of the order of 10 to
15% in the energy range relevant for this study.

IV. DATA SELECTION

The analysis presented in this paper is based on data
collected by the Pierre Auger Observatory from the 1st
of December 2004 to the 31st of December 2012 with the
four standard FD sites. The initial data set consists of
about 2.6×106 shower candidates that met the require-
ments of the four-stage trigger system of the data acqui-
sition. Since only very loose criteria need to be fulfilled
at a trigger level (basically a localized pattern of four
pixels detecting a pulse in a consecutive time order), a
further selection of the events is applied off-line as shown
in Tab. I and explained in more detail in the following
section.

Table I: Event selection criteria, number of events after
each cut and selection efficiency with respect to the

previous cut.

cut events ε [%]

pre-selection:

air-shower candidates 2573713 -

hardware status 1920584 74.6

aerosols 1569645 81.7

hybrid geometry 564324 35.9

profile reconstruction 539960 95.6

clouds 432312 80.1

E > 1017.8 eV 111194 25.7

quality and fiducial selection:

P (hybrid) 105749 95.1

Xmax observed 73361 69.4

quality cuts 58305 79.5

fiducial field of view 21125 36.2

profile cuts 19947 94.4

A. Pre-Selection

In the first step, a pre-selection is applied to the air-
shower candidates resulting in a sample with minimum
quality requirements suitable for subsequent physics
analysis.

Only time periods with good data-taking conditions
are selected using information from databases and results
from off-line quality-assurance analyses. Concerning the
status of the FD telescopes, a high-quality calibration of
the gains of the PMTs of the FD cameras is required and
runs with an uncertain relative timing with respect to the
surface detector are rejected using information from the
electronic logbook and the slow-control database. Fur-
thermore, data from one telescope with misaligned optics
are not used prior to the date of realignment. In total,
this conservative selection based on the hardware status
removes about 25% of the initial FD triggers. Additional
database cuts are applied to assure a reliable correction
of the attenuation of shower light due to aerosols: events
are only accepted if a measurement of the aerosol con-
tent of the atmosphere is available within one hour of the
time of data taking. Periods with poor viewing condi-
tions are rejected by requiring that the measured VAOD,
integrated from the ground to 3 km, is smaller than 0.1.
These two requirements reduce the event sample by 18%.

For an analysis of the shower maximum as a func-
tion of energy, a full shower reconstruction of the events
is needed. The requirement of a reconstructed hybrid
geometry is fulfilled for about 36% of the events that
survived the cuts on hardware status and atmospheric
conditions. This relatively low efficiency is partially due
to meteorological events like sheet lightning at the hori-
zon that pass the FD trigger criteria but are later dis-
carded in the event reconstruction. Moreover, below
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E = 1017.5 eV the probability for at least one triggered
station in the standard 1.5 km grid of the surface detector
drops quickly [74]. Therefore, a fit of the geometry using
hybrid information is not possible for the majority of the
showers of low energy that trigger the data-acquisition
system of the FD.

A full reconstruction of the longitudinal profile, in-
cluding energy and Xmax, is possible for most of the
events with a hybrid geometry. Less than 5% of the
events cannot be reconstructed, because too few profile
points are available and/or their statistical precision is
not sufficient. This occurs for either showers that are far
away from the telescopes and close to the trigger thresh-
old or for geometries pointing towards the telescope for
which the trace of light at the camera is highly time-
compressed.

A possible reflection or shadowing of the light from
the shower by clouds is excluded by combining informa-
tion from the two laser facilities, the lidars and the cloud
monitoring devices described in Sec. II. Events are ac-
cepted if no cloud is detected along the direction to the
shower in either the telescope projection (cloud camera)
or ground-level projection (GOES). Furthermore, events
are accepted if the base-height of the cloud layer as mea-
sured by both the lidars and lasers is above the geomet-
rical field of view or 400 g/cm

2
above the fiducial field of

view. The latter variable is explained in the next section.
When none of these requirements are met, events are re-
jected if either the cloud camera or GOES indicates the
presence of clouds in their respective projections. When
no data from these monitors are available, the event is
accepted if during the data-taking the average cloud frac-
tion as reported by lidars is below 25%, otherwise the
event is not used. In that way, about 80% of the events
are labeled as cloud-free.

In the final step of the pre-selection, we apply the lower
energy threshold of this analysis, E > 1017.8 eV, which
reduces the data set by another 75% to 1.1×105 events
available for further analysis.

B. Quality and Fiducial Selection

After the pre-selection described above, the remaining
part of the analysis is focused on defining a subset of the
data for which the distortion of the Xmax distribution
is minimal, i.e., to achieve a good Xmax resolution via
quality cuts and a uniform acceptance to showers in a
large range of possible Xmax values.

Before giving the technical details of the selection be-
low, it is instructive to discuss first some general con-
siderations about the sampling of the Xmax distribution
with fluorescence detectors. The position of the shower
maximum can only be determined reliably if the Xmax

point itself is observed within the field of view of the
telescopes. The inference of Xmax from only the rising or
falling edge of the profile would introduce a large depen-
dency of the results on the functional form of the profile

(e.g., Gaisser-Hillas function) and the constraints on the
shape parameters. The standard telescopes of the Pierre
Auger Observatory are used to observe shower profiles
within elevation angles from 1.5◦ to 30◦. This geometri-
cal field of view sets an upper and lower limit on the range
of detectable shower maxima for a given arrival direction
and core location, as illustrated in Fig. 2 for three ex-
ample geometries. Nearby showers with an axis pointing
away from the detector have the smallest acceptance for
shallow showers (geometry (A)), whereas vertical showers
cannot be used to sample the deep tail of the Xmax distri-
bution for depths larger the vertical depth of the ground
level, which is about 860 g/cm

2
for the Malargüe site (ge-

ometry (B)). Ideal conditions for measuring a wide range
of Xmax are realized by a geometry that intercepts the
upper field of view at low slant depths and by inclined
arrival directions, for which the slant depth at the ground
is large (geometry (C)). The true distribution considered
for all three cases is identical and indicated as a solid line.
If the frequencies of shower maxima detected with all oc-
curring geometries are collected in one histogram, then
the resulting observed distribution will be under-sampled
in the tails at small and large depths, as illustrated by
the (A+B+C)-distribution in the lower right of Fig. 2.

In addition to these simple geometrical constraints, the
range of viewable depths is limited by the following two
factors. Firstly, showers cannot be observed to arbitrary
distances, but for a given energy the maximum viewing
distance depends on background light from the night sky
(as a function of elevation) and the transmissivity of the
atmosphere. Therefore, even if shower (C) has a large
geometrical field of view, in general Xmax will not be
detectable at all depths along the shower axis. Secondly,
if quality cuts are applied to the data, the available range
in depth depends on the selection efficiency and therefore
the corresponding effective field of view will usually be a
complicated function of energy, elevation and distance to
the shower maximum.

In this work, we follow a data-driven approach to mini-
mize the deformation of the Xmax distributions caused by
the effective field of view boundaries. As will be shown
in the following, a fiducial selection can be applied to
the data to select geometries preferentially with a large
accessible field of view as in the case of the example ge-
ometry (C) resulting in an acceptance that is constant
over a wide range of Xmax values. The different steps
of the quality and fiducial selection are explained in the
following.

a. Hybrid Probability After the pre-selection, only
events with at least one triggered station of the SD re-
main in the data set. The maximum allowed distance of
the nearest station to the reconstructed core is 1.5 km.
For low energies and large zenith angles, the array is
not fully efficient at these distances. To avoid a possible
mass-composition bias due to the different trigger prob-
abilities for proton- and iron-induced showers, events are
only accepted if the average expected SD trigger proba-
bility is larger than 95%. The probability is estimated
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Figure 2: Illustration of the influence of the FD field of view on the sampling of the Xmax distribution. The slant
depth axes in g/cm

2
are shown on the left panel for three different examples of event geometries (A), (B) and (C)

with different ground distances R, zenith angle θ and azimuthal angle φ. The FD field of view is indicated by the
hatched area inside the dashed lines. Examples of correspondingly truncated Xmax distributions are shown on the

right panel together with their sum. For the purpose of this illustration, the same number of events for each
geometry has been assumed.

for each event given its energy, core location and zenith
angle (cf. [75]). This cut removes about 5% of events,
mainly at low energies.

b. Xmax observed It is required that the obtained
Xmax is within the observed profile range. Events where
only the rising and/or falling edge of the profile has been
observed are discarded, since in such cases the position
of Xmax cannot be reliably estimated. As can be seen
in Tab. I, about 30% of the events from the tails of the
Xmax distribution are lost due to the limited field of view
of the FD telescopes.

c. Quality cuts Faint showers with a poor Xmax res-
olution are rejected based on the expected precision of
the Xmax measurement, σ̂, which is calculated in a semi-
analytic approach by expanding the Gaisser-Hillas func-
tion around Xmax and then using this linearized version
to propagate the statistical uncertainties of the number
of photo-electrons at the PMT to an uncertainty of Xmax.
Only showers with σ̂ < 40 g/cm

2
are accepted. Moreover,

geometries for which the shower light is expected to be
observed at small angles with respect to the shower axis
are rejected. Such events exhibit a large contribution of
direct Cherenkov light that falls off exponentially with
the observation angle. Therefore, even small uncertain-
ties in the event geometry can change the reconstructed
profile by a large amount. We studied the behavior of
〈Xmax〉 as a function of the minimum observation angle,

αmin, and found systematic deviations below αmin = 20◦,
which is therefore used as a lower limit on the allowed
viewing angle. About 80% of the events fulfill these qual-
ity criteria.

d. Fiducial Field of View The aim of this selection
is to minimize the influence of the effective field of view
on the Xmax distribution by selecting only type (C) ge-
ometries (cf. Fig. 2).

The quality variables σ̂ and αmin are calculated for dif-
ferent Xmax values in steps of 10 g/cm

2
along the shower

axis within the geometrical field-of-view boundaries. In
that way, the effective slant-depth range for high-quality
showers can be exactly defined and it is given by the in-
terval in slant depth for which both σ̂ < 40 g/cm

2
and

αmin > 20◦. The shower is accepted if this interval is
sufficiently large to accommodate the bulk of the Xmax

distribution. The true Xmax distribution is unfortunately
not known at this stage of the analysis and therefore we
study the differential behavior of 〈Xmax〉 on the lower
and upper field-of-view boundary, Xl and Xu, for differ-
ent energy intervals using data. An example is shown
in Fig. 3. Once the field of view starts truncating the
Xmax distribution, the observed 〈Xmax〉 deviates from its
asymptotically unbiased value. We set the fiducial field-
of-view boundaries at the values of Xl and Xu where a
deviation of ∆ > 5 g/cm

2
occurs to ensure that the over-

all sampling bias on 〈Xmax〉 is smaller than this value.
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The energy dependence of these boundaries is then pa-
rameterized as

X l,u
fid (E) =

{
p1 ; lg(E) > p3,

p1 + p2 (lg(E)− p3)
2

; otherwise,
(6)

with parameters pu = (892,−186, 18.2) and pl = (696,
−34.6, 19.8) for the upper and lower boundary in slant

depth, respectively. p1 and p2 are given in units of g/cm
2

and E is in eV. The requirement thatXl ≤ X l
fid andXu ≥

Xu
fid removes about 64% of all the remaining events.
e. Profile Quality In the last step of the selection,

three more requirements on the quality of the profiles
are applied. Firstly, events with gaps in the profile
that are longer than 20% of its total observed length
are excluded. Such gaps can occur for showers cross-
ing several cameras, since the light in each camera is
integrated only within the PMTs that are more than
ζopt away from the camera border (see, e.g., the gap at

around 1300 g/cm
2

in the profile shown in Fig.1d). Sec-
ondly, residual cloud contamination and horizontal non-
uniformities of the aerosols may cause distortions of the
profile which can be identified with the goodness of the
Gaisser-Hillas fit. We apply a standard-normal transfor-
mation to the χ2 of the profile fit, z = (χ2−ndf)/

√
2 ndf,

and reject showers in the non-Gaussian tail at >2.2σ.
Finally, a minimum observed track length of >300 g/cm

2

is required. These cuts are not taken into account in the
calculation of the effective view, but since the selection
efficiency is better than 94%, the procedure explained in
the last paragraph still yields a good approximation of
the field-of-view boundaries.
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Figure 4: Upper panel: Xmax and energy of the events
used in this paper. Lower panel: number of events in

bins of energy.

In total, the quality and fiducial selection has an effi-
ciency of 18%. This number is dominated by low-energy
showers, where the profiles are faint and only a small
phase space in distance and arrival direction provides a
large effective field of view. Nevertheless, as shown in
Sec. IX A, the efficiency of the quality and fiducial selec-
tion reaches close to 50% at high energies.

C. Final Data Set

After the application of all selection cuts, 19947 events
from the four standard FD sites remain. Air showers that
have been observed and selected at more than one FD
site are combined by calculating the weighted average of
Xmax and energy. This leads to 19759 independent air-
shower events used for this analysis. Their Xmax and
energy values are shown as a scatter plot in Fig. 4.

V. Xmax ACCEPTANCE

Even following the event selection described above,
the probability to detect and select an air shower is not
uniform for arbitrary values of Xmax. The correspond-
ing Xmax acceptance needs to be evaluated to correct
for residual distortions of the Xmax distribution. For
this purpose we use a detailed, time-dependent simula-
tion [74] of the atmosphere, the fluorescence and surface
detector. The simulated events are reconstructed with
the same algorithm as the data and the same selection
criteria are applied. The acceptance is calculated from
the ratio of selected to generated events.

The shape of the longitudinal energy-deposit profiles of
air showers at ultra-high energies is, to a good approxi-
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mation, universal, i.e., it does not depend on the primary-
particle type or details of the first interaction [77]. There-
fore, after marginalizing over the distances to the detec-
tor and the arrival directions of the events, the accep-
tance depends only on Xmax and the calorimetric en-
ergy, but not on the primary mass or hadronic interaction
model. For practical reasons, and since the calorimetric
energies of different primaries with the same total energy
are predicted to be within ±3.5% [78], we studied the
acceptance as a function of total energy and Xmax.

In the lower panel of Fig. 5 an example of the ac-
ceptance with and without fiducial field-of-view cuts is
shown. Since for the purpose of the measurement of the
Xmax distribution only the shape of the acceptance is
important, the curves have been normalized to give a
maximum acceptance of 1. For comparison, the distribu-
tion of Xmax after the full selection is shown in the upper
panel of the figure. As can be seen, the acceptance after
application of fiducial cuts is constant over most of the
range covered by the selected events. The acceptance
without fiducial selection exhibits a constant part too,
but it does not match the range of measured events well
because it starts to depart from unity already at around
the mode of the measured distribution.

Numerically, the Xmax acceptance can be parameter-
ized by an exponentially-rising part, a central constant

part and an exponentially-falling part,

εrel(Xmax) =


e+

Xmax−x1
λ1 ;Xmax ≤ x1,

1 ;x1 < Xmax ≤ x2,

e−
Xmax−x2

λ2 ;Xmax > x2,

(7)

with energy-dependent parameters (x1, λ1, x2, λ2) that
are listed in Tab. II. The uncertainties given in this table
are a combination of statistical and systematic uncer-
tainties. The former are due to the limited number of
simulated events and the latter are an estimate of the
possible changes of the acceptance due to a mismatch of
the optical efficiency, light production and atmospheric
transmission between data and simulation. The energy
scale uncertainty of 14% [61] gives an upper limit on
the combined influence of these effects and therefore
the systematic uncertainties have been obtained by re-
evaluating the acceptance for simulated events with an
energy shifted by ±14%.

VI. THE RESOLUTION OF Xmax

Besides the acceptance, another important ingredient
in the measurement equation, cf. Eq. (4), is the Xmax

resolution which determines the broadening of the origi-
nal distribution by the statistical fluctuations of Xrec

max

around the true Xmax. The energy evolution of the
Xmax resolution is shown in Fig. 6 where the band de-
notes its systematic uncertainty. As can be seen, the to-
tal Xmax resolution is better than 26 g/cm

2
at 1017.8 eV

and decreases with energy to reach about 15 g/cm
2

above
1019.3 eV. In the following we briefly discuss the individ-
ual contributions to the Xmax resolution.

A. Detector

The largest contribution to the Xmax resolution orig-
inates from the overall performance of the detector sys-
tem (including the atmosphere) to collect the light pro-
duced by air showers. The statistical uncertainty of the
determination of the shower maximum from the Gaisser-
Hillas fit, Eq. (5), is determined by the Poissonian fluctu-
ations of the number of photo-electrons detected for each
shower. Moreover, the uncertainty of the reconstruction
of the arrival direction of a shower adds another statis-
tical component to the resolution due to the conversion
from the height of the shower maximum to its slant depth
Xmax. These two contributions can be reliably deter-
mined by a full simulation of the measurement process,
including optical efficiencies and transmission through
the atmosphere [74, 79]. For this purpose we use showers
generated with Conex [80] and Sibyll2.1 [81] for proton
and iron primaries and re-weight the simulated events to
match the observed Xmax distribution. Since high-energy
showers are brighter than low-energy ones, the number of
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Figure 6: Xmax resolution as a function of energy.
Bands denote the estimated systematic uncertainties.

detected photo-electrons increases with energy and, cor-
respondingly, the resolution improves. At 1017.8 eV, the
simulations predict a resolution of about 25 g/cm

2
that

decreases to 12 g/cm
2

towards the highest energies. The
systematic uncertainty of these numbers is of the order
of a few g/cm

2
and has been estimated by shifting the

simulated energies by ±14% (as previously explained in
the acceptance section).

Another detector-related contribution to the resolu-
tion originates from the uncertainties in the alignment
of the telescopes. These are estimated by comparing
the Xmax values from two reconstructions of the data set
with different alignment constants. One set of constants
has been obtained using the traditional technique of ob-
serving tracks of UV stars (see, e.g., [82]) and the other
one used shower geometries from events reconstructed
with the surface detector for a cross-calibration. The
latter are the default constants in the standard recon-
struction. Averaged over all 24 telescopes, the ∆Xmax

values between events from the two reconstructions are
found to be compatible, but systematic alignment differ-
ences are present on a telescope-by-telescope basis giving
rise to a standard deviation of ∆Xmax that amounts to
s = (5 + 1.1 lg(E/EeV)) g/cm

2
. This is used as an esti-

mate of the contribution of the telescope alignment to the
Xmax resolution by adding s/2± s/2 (sys.) to the previ-
ously discussed statistical part of the detector resolution
in quadrature.

Finally, uncertainties in the relative timing between
the FD and the SD can introduce additional Xmax un-
certainties, but even for GPS jitters as large as 100 ns
the effect on the Xmax resolution is . 3 g/cm

2
and can

thus be neglected.

The estimated overall contribution of the detector-
related uncertainties to the Xmax resolution is shown as
a back-slashed band in Fig. 6.

B. Aerosols

Two sources of statistical uncertainty of the aerosol
measurements contribute to the Xmax resolution. Firstly,
the measurement itself is affected by fluctuations of the
night sky background and the number of photons re-
ceived from the laser as well as by the time-variability
of the aerosol content within the one-hour averages. The
sum of both contributions is estimated using the standard
deviation of the quarter-hourly measurements [48, 83]
of the VAOD and propagated to the Xmax uncertainty
during reconstruction. Secondly, non-uniformities of the
aerosol layers across the array are estimated using the dif-
ferences of the VAOD measurements from different FD
sites and propagated to an Xmax uncertainty [46].

The quadratic sum of both sources is shown as the
lowest of the dashed bands in Fig. 6, where the systematic
uncertainty given by the width of the band is due to the
uncertainty of the contribution from the horizontal non-
uniformity.

C. Molecular Atmosphere

Finally, the precision to which the density profiles as a
function of height are known gives another contribution
to the Xmax resolution. It is estimated from the spread
of differences between shower reconstructions using the
density profile from GDAS and shower reconstructions
using actual balloon soundings, which are available for
parts of the data (see Fig. 14 in [45]). This contribution
is shown as a dashed line in Fig. 6.

D. Parameterization of the Resolution

The statistical part of the detector resolution arises
from the statistical uncertainty in the determination of
Xmax and from the statistical uncertainty caused by the
conversion from the height of the maximum in the at-
mosphere to the corresponding depth of Xmax. Simula-
tions of these two contributions show that they are well-
described by the sum of two Gaussian distributions. The
remaining component to the resolution term of Eq. (4) is
also Gaussian and describes the contributions from the
calibration of the detector and from the influence of the
atmosphere. The overall resolution of Xmax can therefore
be parameterized as

R(Xrec
max −Xmax) = f G(σ1) + (1− f) G(σ2) (8)

were G(σ) denotes a Gaussian distribution with mean
zero and width σ. The three parameters f , σ1 and σ2

are listed in Tab. III as a function of energy together
with their systematic uncertainties.
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VII. Xmax MOMENTS

The parameterized acceptance and resolution together
with the measured Xmax distributions provide the full
information on the shower development for any type of
physics analysis. However, the first two moments of the
distribution, 〈Xmax〉 and σ(Xmax), provide a compact
way to characterize the main features of the distribution.
In this section we describe three methods that have been
explored to derive the Xmax moments from our data.

A. Event Weighting

In this approach each selected shower is weighted ac-
cording to the acceptance corresponding to the position
of the shower maximum. Events in the region of constant
acceptance are assigned a weight of one. The under-
representation of the distribution in the non-flat part is
compensated for by assigning the inverse of the relative
acceptance as a weight to showers detected in this region,
w = 1/εrel(Xmax), cf. (7). The unbiased moments can be
reconstructed using the equations for the weighted mo-
ments (cf. A 1). σ(Xmax) is then estimated by subtract-
ing the Xmax resolution in quadrature from the weighted
standard deviation.

B. Λη method

The tail of the Xmax distribution at large values is re-
lated to the distribution of the first interactions of the pri-
mary particles in the atmosphere (see, e.g., [84]). There-
fore, it is possible to describe the true distribution of
deep showers by an exponential function. We subdivide
the measured distribution into three regions: the central
part with a constant acceptance, where the distribution
can be measured without distortions, and the shallow
and deep regions where the relative acceptance departs
from unity. Here, for the purpose of calculating the first
two moments of the distribution, the data are replaced
by an exponential function that has been fitted to the
two tails of the distribution, taking the acceptance into
account (see A 2). A fraction η of the events in the tail
is fitted to obtain the slope Λη, similar to the method
that has been used previously to estimate the interac-
tion length of proton-air collisions [27, 85]. The mean
and standard deviation of the distribution are then cal-
culated by combining the moments of the undistorted
region with the exponential prolongation in the tails. In
practice, since the Xmax distributions have a steep rising
edge, the low-Xmax part is almost fully contained within
the fiducial field of view and only the exponential tail at
deep Xmax values contributes to a correction with respect
to the moments calculated without taking into account
the acceptance. In the final step, σ(Xmax) is obtained by
subtracting the Xmax resolution in quadrature from the
variance derived with this procedure.

C. Deconvolution

As a third method we investigated the possibility to
solve Eq. (4) for the true Xmax distribution f(Xmax) and
to subsequently determine the mean and variance of the
solution. For this purpose, Eq. (4) can be transformed
into a matrix equation by a piece-wise binning in Xmax

and then be solved by matrix inversion. To overcome
the well-known problem of large variances and negative
correlations inherent to this approach (see, e.g., [34]),
we applied two different deconvolution algorithms to the
data, namely regularized unfolding using singular value
decomposition (SVD) of the migration matrix [86] and
iterative Bayesian deconvolution [87].

D. Comparison

Each of these three methods has its own conceptual ad-
vantages and disadvantages. The main virtue of the event
weighting is that it is purely data-driven. However, with
the help of simulated data it was found that this approach
has the largest statistical variance of the three methods,
resulting from large weights that inevitably occur when
a shower is detected in a low-acceptance region.

The estimators of the moments resulting from the Λη-
method are also mainly determined by the measured data
since the fiducial field of view ensures that only the small
part of the distribution outside the range of constant ac-
ceptance needs to be extrapolated. The description of the
tail of the distribution with an exponential function has
a sound theoretical motivation. Obviously, this method
is not applicable when the main part of the distribution
is affected by distortions from the acceptance.

Deconvolution is in principle the most mathematically
rigorous method to correct the measured distributions for
the acceptance and resolution. However, in order to cope
with the large variance of the exact solution, unfolding
algorithms need to impose additional constraints to the
data (such as minimal total curvature [88] in case of the
SVD approach), that are less physically motivated than,
e.g., an exponential prolongation of the distribution.

In the following we will use the Λη-method as the de-
fault way to estimate the moments of the Xmax distribu-
tion. A comparison with the results of the other meth-
ods will be discussed in Sec. IX. It is worthwhile noting
that the moments calculated without taking into account
the acceptance are close to the ones estimated by the
three methods described above, i.e., in the range of [0,

+3] g/cm
2

for 〈Xmax〉 and [0,+5] g/cm
2

for σ(Xmax). As-
suming a perfect Xmax resolution would change σ(Xmax)

by [−5, −3] g/cm
2
. Thus, the estimates of 〈Xmax〉 and

σ(Xmax) are robust with respect to uncertainties on the
acceptance and resolution.
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VIII. SYSTEMATIC UNCERTAINTIES

A. Xmax Scale

The systematic uncertainty of the Xmax scale, i.e., the
precision with which the absolute value of Xmax can be
measured, is shown in Fig. 7. As can be seen, this un-
certainty is ≤10 g/cm

2
at all energies. At low energies,

the scale uncertainty is dominated by the uncertainties
in the event reconstruction and at high energies the at-
mospheric uncertainties prevail. The different contribu-
tions to the Xmax scale uncertainty are discussed in the
following. The full covariance matrix of the Xmax scale
uncertainty is available at [89].

f. Detector Calibration The uncertainties in the rel-
ative timing between the FD sites and SD stations, the
optical alignment of the telescopes and the calibration
of the absolute gains of photomultipliers of the cameras
have been found to give only a minor contribution to
the Xmax scale uncertainty. Their overall contribution is
estimated to be less than 3 g/cm

2
by evaluating the sta-

bility of the Xmax reconstruction under a variation of the
relative timing by its uncertainty of ±100 ns [90], using
different versions of the gain calibration and by appli-
cation of an independent set of alignment constants (cf.
Sec. VI A).

g. Reconstruction The reconstruction algorithms
described in Sec. III are tested by studying the aver-
age difference between the reconstructed and generated
Xmax for simulated data. The Xmax bias is found to
be less than 3.5 g/cm

2
and is corrected for during data

analysis. The dependence of the results on the partic-
ular choice of function fitted to the longitudinal profile
has been checked by replacing the Gaisser-Hillas func-
tion from Eq. (5) by a Gaussian distribution in shower
age s = 3X/(X + 2Xmax), yielding compatible results

within 4 g/cm
2

for either of the variants proposed in [91]
and [92]. Furthermore, we tested the influence of the
constraints 〈X0〉 and 〈λ〉 used in the Gaisser-Hillas fit by
altering their values by the standard deviations given in
Sec. III, which changes the Xmax on average by less than
3.7 g/cm

2
. Since the values obtained in these three stud-

ies (bias of simulated data, Gaussian in age and variation
of constraints) are just different ways of assessing the
same systematic effect, we do not add them in quadra-
ture but assign the maximum deviation of 4 g/cm

2
as an

estimate of the Xmax scale uncertainty originating from
the event reconstruction.

In addition to this validation of the reconstruction of
the longitudinal shower development, we have also stud-
ied our understanding of the lateral distribution of flu-
orescence and Cherenkov light and its image on the FD
cameras. For this purpose, the average of the light de-
tected outside the collection angle ζopt in data is com-
pared to the amount of light expected due to the point
spread function of the optical system and the lateral dis-
tribution of the light from the shower. We find that the
fraction of light outside ζopt is larger in data than in the
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Figure 7: Systematic uncertainties in the Xmax scale as
a function of energy.

expectation and that the ratio of observed-to-expected
light depends on shower age. The corresponding correc-
tion of the data during the reconstruction leads to a shift
of Xmax of +8.3 g/cm

2
at 1017.8 eV which decreases to

+1.3 g/cm
2

at the highest energies. Since the reason for
the mismatch between the observed and expected dis-
tribution of the light on the camera is not understood,
the full shift is included as a one-sided systematic un-
certainty. With the help of simulated data we estimated
the precision with which the lateral-light distribution can
be measured. This leads to a total uncertainty from the
knowledge of the lateral-light distribution of +4.7

−8.3 g/cm
2

at 1017.8 eV and +2.1
−1.3 g/cm

2
at the highest energies.

h. Atmosphere The absolute yield of fluorescence-
light production of air showers in the atmosphere is
known with a precision of 4% [71]. The correspond-
ing uncertainty of the relative composition of fluores-
cence and Cherenkov light leads to an uncertainty on
the shape of the reconstructed longitudinal profiles and
an Xmax uncertainty of 0.4 g/cm

2
. Moreover, the uncer-

tainty in the wavelength dependence of the fluorescence
yield introduces an Xmax uncertainty of 0.2 g/cm

2
. The

amount of multiply-scattered light to be taken into ac-
count during the reconstruction depends on the shape
and size of the aerosols in the atmosphere. In [93] the
systematic effect on the Xmax scale has been estimated
to be ≤2 g/cm

2
. The systematic uncertainty of the mea-

surement of the aerosol concentration and its horizontal
uniformity are discussed in [46, 48, 83]. They give rise
to an energy-dependent systematic uncertainty of Xmax,
since high-energy showers can be detected at large dis-
tances and have a correspondingly larger correction for
the light transmission between the shower and the detec-
tor. Thus, at the highest energies the Xmax scale uncer-
tainty is dominated by uncertainty of the atmospheric
monitoring, contributing +7.8

−4.2 g/cm
2

in the last energy
bin.
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B. Xmax Moments

The systematic uncertainties of 〈Xmax〉 and σ(Xmax)
are dominated by the Xmax scale uncertainty and by the
uncertainty of the Xmax resolution, respectively, which
have been discussed previously (Sec. VIII and VI).

In addition, the uncertainties of the parameters of the
Xmax acceptance, Eq. (7), are propagated to obtain the
corresponding uncertainties of the moments leading to
≤1.5 g/cm

2
and ≤2.7 g/cm

2
for 〈Xmax〉 and σ(Xmax), re-

spectively.

Finally, we have also studied the possible bias of the
moments originating from the difference in invisible en-
ergy between heavy and light primaries. In the energy re-
construction, the average invisible energy is corrected for.
If the primary flux is composed of different nuclei, then
the energy of heavy nuclei will be systematically underes-
timated and the one of light nuclei will be overestimated
on an event-by-event basis. As a consequence, the single-
nuclei spectra as a function of reconstructed energy will
be shifted with respect to each other and the fraction of
nuclei in a bin of reconstructed energy will be biased. To
study consequences of this fraction bias on the moments,
we consider the extreme case of a mixture of proton and
iron primaries and an invisible energy as predicted by the
Epos-LHC model. The observed energy spectrum after
selection follows, to a good approximation, a power law
with a spectral index γ = −1.76− 0.44 lg(E/EeV). The
potential bias of the moments due to the invisible energy
correction is then found to be δ〈Xmax〉 ≤ +1.2 g/cm

2
and

δσ(Xmax) ≤ +0.5 g/cm
2

which we add as a one-sided sys-
tematic uncertainty of the estimated moments.
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Figure 9: Distribution of Xmax differences for events
measured by more than one FD station. The quoted

uncertainties for the standard deviation σ are statistical
for data and systematic for MC. The latter are

dominated by the uncertainty in the contribution of the
alignment and aerosols to the resolution (cf. Sec. VI).

IX. CROSS-CHECKS

The systematic uncertainties estimated in the previ-
ous section have been carefully validated by performing
numerous cross-checks on the stability of the results and
the description of the data by the detector simulation.
In the following we present a few of the most significant
studies.

A. Selection Efficiency

A potential bias from the quality and fiducial selection
can be checked by comparing its efficiency as a function
of energy for data and simulated events. For this pur-
pose, we use the independent measurement of air showers
provided by the SD and measure the fraction of events
surviving the quality and fiducial cuts out of the total
sample of pre-selected events. This estimate of the se-
lection efficiency is shown in Fig. 8 as a function of SD
energy above 1018 eV. Below that energy, the SD trig-
ger efficiency drops below 50%. The comparison to the
simulated data shows a good overall agreement and we
conclude that the selection efficiency is fully described by
our simulation.

B. Detector Resolution

The understanding of the detector resolution is checked
with the help of showers that had been detected by more



16

than one FD site. The distribution of the differences in
Xmax as reconstructed for each site independently gives
an estimate of the Xmax resolution. As can be seen in
Fig. 9, the distribution of the data and its standard devi-
ation agrees well with the one obtained for simulated air
showers.

C. Analysis of Simulated Data

The full analysis chain can be validated by applying
it to simulated data and comparing the estimated Xmax

moments to the ones at generator level. This test has
been performed in two variants. In the first test, we
re-evaluated the fiducial field-of-view cuts from the sim-
ulated data to obtain the optimal boundaries with the
algorithm described in Sec. IV B. Furthermore, we also
tested the performance when applying the range of the
fiducial fields of view derived from the real data (cf.
Eq. (6)). This second test is more conservative as it vali-
dates the ability of the analysis chain to recover the true
moments of input distributions it has not been optimized
for. This is an important feature needed for the compar-
ison of the data to Xmax distributions that differ from
the observed ones, e.g., for fitting different composition
hypotheses to the data (cf. [94]).

In both cases, the moments of the input distribution
can be reproduced well. The results from the test using
the field-of-view cuts from Eq. (6) are shown in Fig. 10.
As can be seen, the simulated measurements of 〈Xmax〉
and σ(Xmax) agree within 2 g/cm

2
with the generated

values in case of a pure-proton or pure-iron composition.
Slightly larger biases are visible for a mixed composition
with 50% proton and 50% iron where 〈Xmax〉 deviates by

about +4 g/cm
2

from the generated value. This bias can
be partially attributed to the systematic uncertainty of
the acceptance correction and the application of the aver-
age invisible-energy correction during the reconstruction
(cf. Sec. VIII B). We conclude that the analysis chain per-
forms well, even for the case where the cuts of the fiducial
fields-of-view are not re-optimized to the input distribu-
tions.

D. FD Sites

The moments of the Xmax distribution can be mea-
sured for each of the four FD sites separately to check
for possible differences due to misalignment or systematic
differences in the PMT calibration. Moreover, the four
sites (denoted as LL, LM, LA and CO in the following)
are located at different altitudes with a maximum differ-
ence between LL at 1416.2 m and CO at 1712.3 m above
sea level. Correspondingly, the aerosols, which have usu-
ally their largest concentration near ground level, are less
important for CO than for the other sites. The results
can be seen in Fig. 11 (a), where the differences of the in-
dividual 〈Xmax〉 and σ(Xmax) with respect to the results

from the full data sample are shown. A χ2 test of the
compatibility with zero yields 42.7 and 46.5 for ∆〈Xmax〉
and ∆σ(Xmax), respectively. Taking into account that
the comparison is done with the mean of the data, the
number of degrees of freedom is 45 in each case and it
can therefore be concluded that the measurements at the
individual sites are indeed statistically-independent esti-
mates of the same quantity. Averaging the ∆-values over
energy for each station, the maximum deviation from
zero is found to be 2.5±1 g/cm

2
for the 〈Xmax〉 measured

in CO, which is well within the systematic uncertainties
for calibration and aerosols listed in Sec. VIII.

E. Zenith Angle

The electromagnetic part of an air shower develops as
a function of traversed air mass. Therefore, the position
of the shower maximum expressed in slant depth does not
depend on the zenith angle of the arrival direction of the
cosmic-ray particle. Accordingly, 〈Xmax〉 and σ(Xmax)
are also expected to be independent of the zenith angle.

However, showers at different zenith angles reach their
maximum at different heights above the ground and in
different regions of the detector acceptance. Therefore,
the study of a possible zenith-angle dependence of the
moments of the Xmax distribution provides an impor-
tant end-to-end cross-check of the understanding of the
atmosphere and the detector.

For the purpose of this check, the data set is di-
vided into two subsamples of approximately equal size
at the median zenith angle (cos θ)med = 0.795 −
0.092 lg(E/EeV) and the acceptance and resolution are
re-evaluated for these samples. This yields estimates of
the Xmax moments for the “near-vertical” and “inclined”
data and their difference is shown in Fig. 11 (b). No sig-
nificant difference is found over the whole energy range
for 〈Xmax〉. At low energies, the near-vertical σ(Xmax) is

smaller by about 5± 2 g/cm
2

than the inclined one. As-
suming that either one of the two subsamples gives a fair
estimate of the true width, the corresponding bias of the
full data sample would be 2.2 ± 1 g/cm

2
, which is com-

patible with the systematic uncertainty of the combined
σ(Xmax) at low energies.

F. Event Selection

The dependence of the results on details of the fiducial
field of view as well as on the acceptance and resolution is
studied by completely removing the fiducial field-of-view
selection. The data selected in this way is then corrected
with the appropriate acceptance and resolution using the
event weighting method. The difference from the default
moments is shown in Fig. 11 (c), where the error bars
take into account the correlation between the results due
to the fact that they partially share the same events. As
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can be seen, the differences are within 4 g/cm
2

on aver-
age for both, 〈Xmax〉 and σ(Xmax). Due to the larger
importance of the acceptance correction in the case of
estimating the moments without fiducial cuts, it is ex-
pected that the corresponding systematic uncertainties
are larger than the ones discussed in Sec. VIII. Moreover,
the Xmax resolution of this selection is worse than the
default discussed in Sec. VI. Given these differences, we
conclude that the two results are in good overall agree-
ment.

G. Analysis Method

The different methods for the estimation of the Xmax

moments that were introduced in Sec. VII are compared
in Fig. 11 (d). The event-weighting yields results that
are very similar to the Λη-method. The presented sta-
tistical uncertainties account for the correlation of the
two estimates which use exactly the same data set. The
results of the two methods are found to be compatible
with a χ2/ndf of 0.9 and 1.4 for 〈Xmax〉 and σ(Xmax),
respectively.

The moments calculated from the deconvoluted Xmax

distributions using either the Bayesian or SVD method
were found to be compatible within 1 g/cm

2
. Therefore,

in Fig. 11 (d) the differences from the default result are
shown for the arithmetic average of the two. As can be
seen, they scatter around zero with no visible systematic
trend. The statistical uncertainties of these differences
have not been evaluated, but an estimate of their vari-
ances can be obtained by assuming proportionality to the
statistical uncertainties of the default results. A χ2/ndf
of 1 is obtained when uncertainties are assumed to be
59% and 90% of those given in Tab. IV for 〈Xmax〉 and
σ(Xmax), respectively. Therefore, it can be concluded
that the moments obtained by deconvolution agree with
the default results within the statistical uncertainties of
the latter.

X. RESULTS AND DISCUSSION

In the following we present the results of this analysis
in energy bins of ∆ lg(E/ eV) = 0.1. Above 1019.5 eV
an integral bin is used. The highest-energy event in
this data sample had been detected by all four FD sites
and its reconstructed energy and shower maximum are
E = (7.9 ± 0.3)×1019 eV and Xmax = 762 ± 2 g/cm

2
,

respectively, where the uncertainties are statistical only.
The Xmax distributions after event selection are shown

in Fig. 12. These are the “raw” distributions (fobs(X
rec
max)

in Eq. (4)) that still include effects of the detector reso-
lution and the acceptance. Electronically readable tables
of the distributions, as well as the parameters of the res-
olution and acceptance, are available at [89]. A thorough
discussion of the distributions can be found in an accom-
panying paper [94], where a fit of the data with simulated

templates for different primary masses is presented.
In this paper we will concentrate on the discussion of

the first two moments of the Xmax distribution, 〈Xmax〉
and σ(Xmax), which are listed in Tab. IV together with
their statistical and systematic uncertainties. The sta-
tistical uncertainties are calculated with the parametric
bootstrap method. For this purpose, the data are fitted
with Eq. 4 assuming the functional form suggested in [76]
as f(Xmax). Given this parametric model of the true
Xmax distribution, realizations of the measurement are
repeatedly drawn from Eq. 4 with the number of events
being equal to the ones observed. After application of
the Λη analysis described in Sec. VII B, distributions of
Xmax and σ(Xmax) are obtained from which the statisti-
cal uncertainties of the measured moments are estimated.

A comparison of the predictions of the moments from
simulations for proton- and iron-induced air showers to
the data is shown in Fig. 13. The simulations have been
performed using the three contemporary hadronic inter-
action models that were either tuned to recent LHC data
(QGSJetII-04 [95, 96], Epos-LHC [97, 98]) or found in
good agreement with these measurements (Sibyll2.1
[81], see [99]). It is worth noting that the energy of
the first data point in Fig. 13 corresponds to a center-of-
mass energy that is only four times larger than the one
currently available at the LHC (

√
s = 8 TeV). There-

fore, unless the models have deficiencies in phase-space
regions that are not covered well by LHC measurements,
the uncertainties due to the extrapolation of hadronic in-
teractions to the lower energy threshold of this analysis
should be small. On the other hand, the last energy bin
at 〈lg(E/ eV)〉 = 19.62 corresponds to a center-of-mass
energy that is a factor of about 40 higher than the LHC
energies and the model predictions have to be treated
more carefully.

Comparing the energy evolution of 〈Xmax〉 for data and
simulations in Fig. 13 it can be seen that the slope of the
data is different than what would be expected for either
a pure-proton or pure-iron composition. The change of
〈Xmax〉 with the logarithm of energy is usually referred
to as elongation rate [17–19],

D10 =
d〈Xmax〉

d lg(E/ eV)
. (9)

Within the superposition model, where it is assumed that
a primary nucleus of mass A and energy E can be to a
good approximation treated as a superposition of A nu-
cleons of energy E′ = E/A, the elongation rate is ex-
pected to be the same for any type of primary. Any
deviation of an observed elongation rate from this expec-
tation D̂10 can be attributed to a change of the primary
composition,

D10 = D̂10

(
1− d〈lnA〉

d ln(E/ eV)

)
. (10)

A single linear fit of 〈Xmax〉 as a function of lg(E) does
not describe our data well (χ2/ndf = 138.4/16). Allowing
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for a change in the elongation rate at a break point lg(E0)
yields a good χ2/ndf of 8.2/14 with an elongation rate of

D10 = 86.4± 5.0 (stat.) +3.8
−3.2 (sys.) g/cm

2
/decade (11)

below lg(E0/ eV) = 18.27± 0.04 (stat.) +0.06
−0.07 (sys.) and

D10 = 26.4± 2.5 (stat.) +7.0
−1.9 (sys.) g/cm

2
/decade (12)

above this energy. The average shower maximum at E0 is
746.8± 2.1 (stat.) + 6.6

−10.0 (sys.) g/cm
2
. Here the systematic

uncertainties on D10 have been obtained by varying the
individual contributions of the systematic uncertainties
on 〈Xmax〉 separately.

The elongation rates predicted by air-shower simu-
lations for a constant composition range from 54 to
64 g/cm

2
/decade. Together with the results in Eqs. (11)

and (12) we can therefore deduce that

d〈lnA〉
d lg(E/ eV)

= −1.07±0.20 (stat.) +0.15
−0.13 (sys.) +0.26

−0.31 (model)

(13)
below E0 and

d〈lnA〉
d lg(E/ eV)

= +1.23±0.10 (stat.) +0.07
−0.27 (sys.) +0.09

−0.10 (model)

(14)
above this energy. This implies that there is an evolution
of the average composition of cosmic rays towards lighter
nuclei up to energies of 1018.27 eV. Above this energy, the
trend reverses and the composition becomes heavier.

A similar behavior is visible for the width of the Xmax

distribution in the right panel of Fig. 13, where it can
be seen that the σ(Xmax) gets narrower towards high
energies, as it would be expected for showers induced by
heavy nuclei.

For a more quantitative study of the evolution of
the composition, 〈Xmax〉 and σ(Xmax) are converted
to the first two moments of the lnA distribution (cf.
Eq. (3)) following the method described in [100, 101].
The mean and variance of lnA are shown in Fig. 14 using
air-shower simulations with three interaction models.
As can be seen for all three cases, the composition is
lightest at around 1018.3 eV and the different features of
hadronic interactions implemented in the three models
give rise to differences in 〈lnA〉 of about ±0.3. The
interpretation with Epos-LHC leads to the heaviest
average composition that is compatible with the lnA of
nitrogen at the highest energies. The variance of lnA
derived with Epos-LHC and Sibyll2.1 suggests that
the flux of cosmic rays is composed of different nuclei at
low energies and that it is dominated by a single type
of nucleus above 1018.7 eV where the variance, V (lnA),
is close to zero. The interpretation with QGSJetII-04
leads to unphysical variances (V (lnA) < 0) above
1018.4 eV and therefore this model is disfavored by our
data, unless one allows for a systematic bias that is twice
as large as the uncertainties estimated in Sec. VIII.

XI. CONCLUSIONS

In this paper, we presented the measurement of the
distribution of the depth of shower maximum of ultra-
high energy cosmic-ray air showers. We described the
data selection which allows for a nearly unbiased mea-
surement of the distributions and discussed the residual
effects of acceptance and resolution. The data set is the
largest sample of Xmax measurements hitherto collected
by a cosmic-ray detector. We provide computer-readable
tables of the distributions and detector parameters that
make it possible to interpret the measurements without
the need of additional software to simulate the detec-
tor response. This approach will also facilitate the com-
parison with measurements of Xmax from other experi-
ments [102]. Here we cannot provide such a comparison,
since for these data neither the detector bias is controlled
for using fiducial cuts, nor are the resolution and accep-
tance publicly available.

An interpretation in terms of mass composition of the
moments of the Xmax distribution was given using air-
shower simulations with contemporary hadronic interac-
tion models. Assuming that the modeling of hadronic
interactions gives a fair representation of the actual pro-
cesses in air showers at ultra-high energies, our data sug-
gest that the flux of cosmic rays is composed of pre-
dominantly light nuclei at around 1018.3 eV and that the
fraction of heavy nuclei is increasing up to energies of
1019.6 eV. Estimates of the fractions of groups of nuclei
contributing to the cosmic-ray flux can be derived by in-
terpreting the full distributions. Such an analysis can be
found in an accompanying paper [94].
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We are very grateful to the following agencies and
organizations for financial support: Comisión Nacional
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Appendix A: Calculation of Xmax Moments

1. Weighted Events

One possibility to correct for the acceptance as a
function of Xmax is to assign to each event a weight
wi = 1/εrel(Xmax,i) . The average shower maximum of
events weighted by the inverse of the acceptance is given
by

〈Xmax〉 =

(∑
i

wi Xmax,i

)/∑
i wi. (A1)

The second non-central moment is

〈X2
max〉 =

(∑
i

wi (Xmax,i)
2

)/∑
i wi (A2)

with which

σ(Xmax)2 = k
(
〈X2

max〉 − 〈Xmax〉2
)

(A3)
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Figure 15: Fit to the tails of the Xmax distribution
(18.1 < lg(E/ eV) < 18.2). The region of constant

acceptance εrel = 1 is indicated by arrows.

where

k = (
∑
i wi)

2 /(
(
∑
i wi)

2 −
∑
i w

2
i

)
(A4)

giving us the usual factor of k = N/(N − 1) when all
weights are equal to one.

2. Λη-Method

When the shower maxima of the events in the tails of
the Xmax distribution follow an exponential distribution,
damped by an exponential acceptance above a certain
depth (cf. Eq. (7)), then the resulting distribution of the
upper tail is given by

f(z) = k e
− z

Λη

{
1 ; z < z0,

e−
z−z0
λ ; otherwise,

(A5)

and a similar formula describes the lower tail, where z
denotes the distance to the start point of the fit and
z0 is the distance above which the acceptance decreases
exponentially with decay constant λ. The normalization
is given by

k = Λη

(
1 + e

− z0
Λη

[
λ

λ+ Λη
− 1

])
. (A6)

The fraction of events in the tail is denoted by η. Follow-
ing [27] we use η = 0.20 for the tail at large Xmax and
the leading edge of the Xmax distribution is fitted using
η = 0.15.

The unbinned likelihood for N events in the tail is

− logL ∝ N log k(Λη) +
1

Λη

N∑
i=1

zi, (A7)

where terms independent of Λη have been omitted.
An illustration of a fit of the upper and lower tail of the

Xmax distribution is shown in Fig. 15. The fitted damped
exponential is shown as the solid line and the range of
constant acceptance is indicated by arrows. For the pur-
pose of calculating the moments, the data distribution is
replaced by the exponential functions (shown as dashed
lines) outside of the εrel = 1 range.

Appendix B: Data tables

Table II: Parameters of εrel(Xmax) (Eq. (7)) in g/cm
2
.

lgE range x1 λ1 x2 λ2

[17.8, 17.9) 586 ± 6 109 ± 17 881 ± 8 95 ± 7

[17.9, 18.0) 592 ± 9 133 ± 17 883 ± 8 101 ± 7

[18.0, 18.1) 597 ± 11 158 ± 19 885 ± 8 107 ± 7

[18.1, 18.2) 601 ± 14 182 ± 21 887 ± 8 113 ± 7

[18.2, 18.3) 604 ± 17 206 ± 24 888 ± 8 119 ± 7

[18.3, 18.4) 605 ± 20 230 ± 28 890 ± 8 125 ± 7

[18.4, 18.5) 605 ± 23 253 ± 32 892 ± 8 131 ± 7

[18.5, 18.6) 604 ± 27 276 ± 38 894 ± 9 137 ± 8

[18.6, 18.7) 602 ± 30 299 ± 44 896 ± 9 143 ± 8

[18.7, 18.8) 599 ± 33 321 ± 51 898 ± 9 150 ± 8

[18.8, 18.9) 594 ± 36 344 ± 59 899 ± 9 156 ± 8

[18.9, 19.0) 588 ± 39 365 ± 67 901 ± 9 162 ± 8

[19.0, 19.1) 581 ± 43 386 ± 77 903 ± 9 168 ± 8

[19.1, 19.2) 573 ± 46 407 ± 86 905 ± 9 174 ± 8

[19.2, 19.3) 563 ± 49 428 ± 98 907 ± 9 180 ± 8

[19.3, 19.4) 553 ± 52 447 ± 109 908 ± 9 186 ± 8

[19.4, 19.5) 540 ± 56 468 ± 122 910 ± 9 192 ± 8

[19.5,∞) 517 ± 62 502 ± 146 913 ± 10 203 ± 9
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Table III: Parameters of the Xmax resolution (Eq. (8)).

σ1 and σ2 are in g/cm
2
. The uncertainties are

systematic and fully correlated between σ1 and σ2.

lgE range σ1 σ2 f

[17.8, 17.9) 17.5 ± 0.7 33.7 ± 1.4 0.62

[17.9, 18.0) 16.7 ± 0.7 32.9 ± 1.4 0.63

[18.0, 18.1) 15.9 ± 0.7 31.9 ± 1.4 0.63

[18.1, 18.2) 15.1 ± 0.7 31.0 ± 1.4 0.64

[18.2, 18.3) 14.4 ± 0.7 30.0 ± 1.4 0.65

[18.3, 18.4) 13.8 ± 0.7 29.1 ± 1.5 0.66

[18.4, 18.5) 13.3 ± 0.7 28.1 ± 1.6 0.67

[18.5, 18.6) 12.8 ± 0.8 27.1 ± 1.6 0.68

[18.6, 18.7) 12.3 ± 0.8 26.3 ± 1.7 0.69

[18.7, 18.8) 12.0 ± 0.8 25.4 ± 1.8 0.70

[18.8, 18.9) 11.7 ± 0.9 24.7 ± 1.9 0.70

[18.9, 19.0) 11.5 ± 0.9 24.1 ± 1.9 0.71

[19.0, 19.1) 11.3 ± 0.9 23.6 ± 1.9 0.72

[19.1, 19.2) 11.2 ± 0.9 23.3 ± 2.0 0.73

[19.2, 19.3) 11.1 ± 0.9 23.1 ± 2.0 0.74

[19.3, 19.4) 11.1 ± 1.0 23.1 ± 2.0 0.75

[19.4, 19.5) 11.1 ± 1.0 23.2 ± 2.0 0.76

[19.5,∞) 11.2 ± 1.0 23.7 ± 2.1 0.77

Table IV: First two moments of the Xmax distributions.
Energies are in [ eV] and 〈Xmax〉 and σ(Xmax) are given

in [g/cm
2
] followed by their statistical and systematic

uncertainties. The number of selected events in each
energy bin is given in the third column.

lgE range 〈lgE〉 N 〈Xmax〉 σ(Xmax)

[17.8, 17.9) 17.85 3768 709.9 ± 1.2 +7.6
−10.2 59.6 ± 1.7 +1.9

−1.7

[17.9, 18.0) 17.95 3383 719.9 ± 1.4 +7.5
−10.2 62.4 ± 2.1 +2.1

−1.8

[18.0, 18.1) 18.05 2818 725.2 ± 1.5 +7.4
−10.2 59.5 ± 2.0 +2.2

−1.9

[18.1, 18.2) 18.15 2425 736.9 ± 1.8 +7.3
−10.1 64.3 ± 2.6 +2.4

−2.1

[18.2, 18.3) 18.25 1952 744.5 ± 2.0 +7.3
−9.9 66.4 ± 2.6 +2.6

−2.2

[18.3, 18.4) 18.35 1439 748.0 ± 2.0 +7.3
−9.7 60.2 ± 2.8 +2.3

−2.0

[18.4, 18.5) 18.45 1139 752.2 ± 2.1 +7.3
−9.4 53.3 ± 2.9 +2.1

−1.8

[18.5, 18.6) 18.55 814 754.5 ± 2.2 +7.3
−9.1 53.5 ± 3.0 +1.9

−1.7

[18.6, 18.7) 18.65 575 756.1 ± 2.7 +7.4
−8.8 54.5 ± 3.5 +1.7

−1.6

[18.7, 18.8) 18.75 413 757.4 ± 2.8 +7.5
−8.5 45.8 ± 3.4 +1.5

−1.5

[18.8, 18.9) 18.85 297 763.6 ± 2.9 +7.7
−8.1 42.8 ± 3.6 +1.4

−1.4

[18.9, 19.0) 18.95 230 764.6 ± 3.2 +7.8
−7.8 43.4 ± 4.1 +1.3

−1.4

[19.0, 19.1) 19.05 165 766.4 ± 3.3 +8.0
−7.6 39.0 ± 3.8 +1.3

−1.4

[19.1, 19.2) 19.14 114 767.0 ± 3.6 +8.2
−7.4 36.7 ± 3.6 +1.3

−1.4

[19.2, 19.3) 19.25 87 779.5 ± 5.1 +8.5
−7.2 46.4 ± 6.2 +1.2

−1.3

[19.3, 19.4) 19.34 63 773.1 ± 5.0 +8.7
−7.1 40.1 ± 4.8 +1.3

−1.4

[19.4, 19.5) 19.45 40 787.9 ± 9.6 +8.9
−7.0 53.2 ±12.7 +1.3

−1.4

[19.5, ∞ ) 19.62 37 779.8 ± 5.0 +9.4
−6.9 26.5 ± 4.8 +1.5

−1.6
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